
Download free eBooks at bookboon.com

Java: Classes in Java Applications

93

Java Interfaces

5. Java Interfaces

Up to this point in the guide, the reader will not have encountered any examples of a Java interface. This
chapter explains how members, in addition to those accessible to a class by means of inheritance, can be
introduced into Java classes by means of a special class known as a Java interface.

5.1 What is a Java Interface?

Examples discussed in previous chapters readily show that method implementations embody the
application logic of a Java application and method invocations run the application. It almost goes without
saying, therefore, that the methods implemented in the classes defined in a Java application are
fundamental to its operation.

In the light of the content of previous chapters, what do we know about a method written by a developer or

one that is specified by the Java API? To answer this question, let us re-visit two of the methods in the
themed application.

Firstly, the documentation and declaration of the takeItemOnLoan method of the DvdMembershipCard

class is as follows.

 /**
 * This method takes a specific DVD on loan. It overrides the method in the parent class.
 * @param catNo The catalogue number of the DVD to take on loan.
 */
 public void takeItemOnLoan(String catNo) throws ItemLimitException { }

Secondly, let us recall from Chapter Four that the readMembers method of the MediaStore class calls the
readObject method of one of the I/O classes in a try block. Part of the documentation of the readObject

method, taken from the Java API, includes the following information:

readObject
 public final Object readObject()
 throws IOException

The documentation of both methods includes a number of elements that are known to the user of the
method. The known elements of the two methods are listed in the box on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

94

Java Interfaces

• the method’s identifier;

• the method’s return type;

• the method’s parameters;

• the exceptions thrown by the method.

The contents of the box above are, in fact, the method’s return type, signature and throws clause. For the
sake of brevity, we will refer to the set of (four) components as the method’s description.

There is no reason why we cannot extrapolate this notion and state that any Java method can be
similarly described.

The description of a method is aimed at the user of the method, i.e. the code – another method - that
invokes it. This means that the description of a method must be known to the developer so that other
methods can invoke the method without having to know how the method is implemented. All that the
calling method needs to know are the four items in the box above.

For example, the calling method of the takeItemOnLoan method in the themed application is a method
that calls takeItemsOnLoan when one of the buttons of the application’s GUI is pressed. Recalling the
simplified code for the calling method from Chapter Four, we can see that the code shown below only
needs to know that takeItemsOnLoan throws an exception and that it takes an argument of the String type,
as follows:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Java: Classes in Java Applications

95

Java Interfaces

// if the button pressed is the ‘Borrow DVD’ button.
 {
 // Get the film from the list of DVDs available for loan.

// Get the catalogue number of the DVD; this is a String.
 // Use the catalogue number to borrow the film using the member's DVD card.
 // takeItemOnLoan throws an exception.
 try
 {
 membersCard.takeItemOnLoan(catNo);
 }
 catch(ItemLimitException ile)
 {
 messagesArea.setText(ile.getMessage());
 }

 } // end if

The code shows that the calling method does not need to know how takeItemOnLoan is implemented in
terms of its statements; the calling method calls takeItemOnLoan in the knowledge of its description.

Similarly, the code that calls the readObject method of the I/O stream needs to know that readObject

returns an Object, takes no arguments and throws an exception. The calling method in the themed
application is shown below.

 /**
 * This method reads the file of members.
 */
 public void readMembers() {

 try
 { // Start of try block.
 // The String is the path to the file.
 FileInputStream fis = new FileInputStream("C:\\Temp\members.dat");
 ObjectInputStream ois = new ObjectInputStream(fis);
 // Note the cast in the next statement.
 members = (Member []) ois.readObject();
 } // End of try block.
 catch (IOException e) { // Start of catch block.
 System.out.println("Error: " + e.getMessage());
 } // End of catch block.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

96

Java Interfaces

 finally
 {
 ois.close();
 fis.close();
 }

 } // End of readMembers.

The code shows that the calling method does not need to know how readObject is implemented; the
calling method calls readObject in the knowledge of its description specified in the API.

The two examples above show that a calling method does not need to know how the method called is
implemented; rather, it only needs to know what the method does in terms of its description. The outcome
of decoupling the how and what of a method, illustrated by the examples above, means that the
implementation of a method can change – to make it more efficient for example – without changing
its description.

The outcome of the examples and their explanation above serves to emphasise the fundamental
importance of a method’s description in that it provides the developer with sufficient information to
invoke it. Therefore, we can regard the notion of a method’s description as a kind of contract offered by
the method in that it indicates how it is invoked. Extrapolating from the examples above implies that any

method that invokes another method can do so in the knowledge of the latter’s description; the calling
method does not need to know how the called method is implemented. In practice, if the body of a method
is changed without changing its description, method invocations do not have to be re-written.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Java: Classes in Java Applications

97

Java Interfaces

The outcome of decoupling method implementation from method description has profound implications in
Java. Methods can be published, as in the Java API, so that developers can programme to their description
without regard to their implementation.

Publishing the descriptions of methods of Java classes implies that they can be standardised so that a client

application – i.e. one that invokes published methods – can be written in the knowledge of the description
of the methods provided by a server application – i.e. one that implements the published method.

(There is a category of applications – that are outside the scope of this guide – in which the client
application calls server methods across the Internet. The provider of the server part of the application
publishes – to Java developers – the description of methods implemented by the server application so that
the developer can write Java clients independently of the implementation of the server. This category of
Internet-based application is known as a Web service. Web services rely on published method descriptions
known as interfaces. In the case of a Web service, the client and server applications can be written in any
language; in fact, the client and server do not have to be written in the same language given that the client
is programmed to the server application’s interface.)

The outcome of this section is to emphasise the fundamental importance of a method’s description and
leads to the concept of a Java interface.

A Java interface is a category of Java class that includes the
description of one or more methods in a collective contract that other
classes can use.

Classes that use a Java interface are said to implement that interface. Defining and implementing
interfaces is explained in the next section.

5.2 Defining and Implementing a Java Interface

An interface is similar to a class in that it declares members. An interface can declare constants and
declares methods by their description; there are no method bodies. Interfaces cannot be instantiated; they
can only be implemented by classes or extended by other interfaces.

Defining an interface is similar to declaring a class definition. For example, a version of the themed
application includes the interface shown below.

 /** The Interface CardStatus introduces new behaviour to its implementing classes.
 * @author David M. Etheridge.
 * @version 1.0, dated 29 November 2008.
 */

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

98

Java Interfaces

public interface CardStatus {

 /**
 * setStatus sets the status of the card to either "Standard" or "Premier" when it is called.
 * @param status A String to set the variable status in the MembershipCard class.
 */
 void setStatus(String status);

 /**
 * getStatus returns the value of the attribute status.
 * @return The value of the variable status in the MembershipCard class.
 */
 String getStatus();

 /**
 * setDiscout sets the level of discount of the card.
 * @param discount An integer used to set the discount for the card.
 */
 void setDiscount(int discount);

 /**
 * getDiscount returns the value of the discount.
 * @return The value of the discount.
 */
 int getDiscount();

 } // End of interface definition.

It should be noted that method declarations in an interface are terminated with a semi-colon and do not
require the modifier public.

In this version of the themed application, the MembershipCard class implements the CardStatus interface
and provides a body for each method declared in the interface. If the developer omits any of these methods,
the compiler issues a warning to this effect. A simplified version of the MembershipCard class follows, the
purpose of which is to show the reader how the interface is implemented by the class.

/**
 * The MembershipCard class implements the methods required for transactions carried out
 * by a member’s virtual membership card.
 * @author D. M. Etheridge.
 * @version 1.0, dated 29 November 2008.
 */

public class MembershipCard implements Serializable, CardStatus {

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

99

Java Interfaces

 // Declare instance variables.
 protected int noOnLoan.
 protected int maxOnLoan;
 protected int discount;
 protected String status;

 /**
 * Constructor for objects of class MembershipCard.
 * @param max The maximum number of items allowed on loan.
 */
 public MembershipCard(int max) {

 // The argument passed to this constructor is used to initialise the
 // maxOnLoan field.

 maxOnLoan = max;

 } // End of constructor.

 // Methods to return the maximum number of items permitted to be on loan, to return
 // the number of items currently on loan, take items on loan and return items on loan
 // would follow but are omitted for the purposes of the present discussion.

 // Methods associated with the interface CardStatus are on the next page.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Java: Classes in Java Applications

100

Java Interfaces

 /**
 * This method sets the variable called status.
 * @param status The value of the card's status: "Standard" or * "Premier", is passed to
 * the method when it is called.
 */
 public void setStatus(String status){

 this.status = status;

 } // End of implementation of setStatus.

 /**
 * This method returns the value of the variable called status.
 * @return status The value of status.
 */
 public String getStatus(){

 return status;

 } // End of implementation of getStatus.

 /**
 * This method has an empty body in this version of the application.
 */
 public void setDiscount(int discount) { }

 /**
 * This method also has an empty body in this version of the application.
 * @return discount The value of discount.
 */
 public int getDiscount() { }

 } // End of class definition of MembershipCard.

As the code shows, the setter and getter methods for the variable discount are empty in this version of the
themed application. (An empty method is often referred to as a stub.) However setDiscount and
getDiscont must be implemented, either with a body or as a stub, because the contract of the CardStatus

interface demands as much. If either setDiscount or getDiscount are omitted by the developer, the
compiler would issue a warning to this effect.

The class declaration also shows that an interface with the identifier Serilaizable is also implemented by
MembershipCard. It is evident, therefore, that a class may implement more than one interface.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

101

Java Interfaces

The definition of a Java interface can be summarized by the following general syntax:

public interface < NameOfInterface > extends < SuperInterfaces >

An interface, unlike a class, can extend any number of interfaces in a comma-separated list.

5.3 The Role of Interfaces as a Means to Introduce Behaviour to a
Class

A similar version of the themed application modifies the class definition for MembershipCard as follows:

public class MembershipCard extends Card implements Serializable, CardStatus {

and shows that a class can extend from only one class – as we discovered in Chapter Three – but can
implement more than one interface. This means that the MembershipCard class not only contains its own
methods and those inherited from the Card class, it also contains methods declared in the interface
CardStatus. (The interface Serializable is one of a number of tagged interfaces. Tagged interfaces do not
declare methods; they are used to indicate to the run-time system that an activity is required; in this case
the activity required involves reading and writing objects to an input/output stream. [We will encounter
input/output streams in Chapter One in An Introduction to Java Programming 3: Graphical User

Interfaces.] This activity is known as object serialization – or serialization for short - and is used in the
themed application to store an array of Member objects to a file. Serialization is achieved by declaring that
a class implements the Serializable interface.)

Both versions of the class declarations of MembershipCard referred to above implement the CardStatus

interface and, in effect, introduce behaviour to the class in addition to inherited behaviour. Given that Java
does not permit multiple inheritance, interfaces are used as an alternative in order to add methods to a
class. Adding methods to a class by means of interfaces gives them a very important role in Java.

The role of Java interfaces arises due to the fact that interfaces are not part of the general class hierarchy.
An extract from the API for the Serializable interface of the java.io package shown on the next page
illustrates this.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

102

Java Interfaces

java.io

Interface Serializable
All Known Subinterfaces:

AdapterActivator, Attribute, Attribute, Attributes, BindingIterator, ClientRequestInfo,
ClientRequestInterceptor, Codec, CodecFactory, Control … etc.

Selecting the subinterface Attribute displays to the following page of the API.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Java: Classes in Java Applications

103

Java Interfaces

Interface Attribute
All Superinterfaces:

Cloneable, Serializable
All Known Implementing Classes:

BasicAttribute

The point of these illustrations is not to find out what the various interface do, it is to note that interfaces
have their own internal hierarchy that is not part of the overall class hierarchy. This means that a class can
implement more than one interface and an interface can be implemented by more than one unrelated class.

Interfaces combine with classes in that the API specifies which classes implement which interface, as is
shown above for the interface Attribute.

5.4 Interfaces as Types

This chapter has shown that a Java class can inherit from only one class but that it can implement more
than one interface. This means that an object can have multiple types: its own type, superclass types – as
we saw in Chapter Three - and the types of all interfaces that the class implements.

Consider, for example, the version of the themed application shown in the screen shot:

Figure 5.1 The class diagram for (a version of) the themed application

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

104

Java Interfaces

For the purposes of the present discussion, it is not important to know what each class in the application
does, rather, the reader should note that the figure shows that MembershipCard inherits from Card and has
two subclasses which both implement the CardStatus interface.

In the context of the application shown in Figure 5.1, the following statements compile:

// Note: the constructors for MembershipCard, DvdMembershipCard and
// GameMembershipCard take an integer argument.
// Instantiate an object whose type is the same as the run-time type.
Card cardOne = new Card();
// Instantiate an object whose type is the superclass of the run-time type.
Card cardTwo = new MembershipCard(10);
// Instantiate an object whose type is the interface implemented by one of its run-time types.
CardStatus cardThree = new DvdMembershipCard(10);
// Instantiate an object whose type is the interface implemented the other run-time type.
CardStatus cardFour = new GameMembershipCard(10);

The third and fourth statements show that when a class type variable is declared to be an interface type,
the variable can be used as an object reference to an object that implements that interface. In other words,
the instance can be accessed by a reference of the interface type.

Now that it has been have shown - by example - that interfaces can be declared as class types, this raises a
question: how can we use an interface as a type?

5.4.1 The Use of Interfaces as Class Types

Referring to the example in Section 5.4, let us assume that a substantial amount of code has to be written
for a class that process instances of DvdMembershipCard objects. The code would, firstly, instantiate, an
instance of DvdMembershipCard as follows:

// Instantiate an object whose type is the interface implemented by DvdMembershipCard.
CardStatus membersCard = new DvdMembershipCard(10);

The code that follows this declaration might include a number of statements that include the variable
membersCard.

Let us also assume that code also has to be written for a similar class that process instances of
GameMembershipCard objects. This code would also instantiate an instance of a GameMembershipCard

object as shown next:

// Instantiate an object whose type is the interface implemented by GameMembershipCard.
CardStatus membersCard = new GameMembershipCard(10);

Let us assume that the code that follows this declaration is the same as the code that processes a member’s
DVD card. (This assumption is based on the notion that card processing is the same irrespective of the
type of card.)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

105

Java Interfaces

This means that the code that processes a member’s DVD card can be copied to form the code that
processes a member’s games card. The only statement that would need to be re-written is the one that calls
the constructor of the card; all other statements that include the variable membersCard would not have to
be re-written.

A similar use of interfaces as types arises when a number of similar classes implement the same interface.
For example let us assume that there are a number of data structures that can be used to store a specific
primitive data type or object type, all of which implement the same interface.

Instantiating an object of one of these data structures is generalised as follows:

 // SomeDataStructure implements AnInterface.
AnInterface dataStructure = new SomeDataStructure();

followed by code that includes the variable dataStructure.

If we wish to change the data structure, in the light of testing the application, we need to re-write only one
line of code, i.e. the call to the constructor of the new data structure, as follows:

 // SomeOtherDataStructure implements AnInterface.
AnInterface dataStructure = new SomeOtherDataStructure();

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Java: Classes in Java Applications

106

Java Interfaces

Subsequent statements that include the variable dataStructure do no have to be re-written.

The examples in this section show how the compatibility rules for using interfaces as types can be
exploited to minimise re-writing code and gives rise to significant re-useability of code.

5.5 Summary of Java Interfaces

The principal concepts associated with Java interfaces are summarised next.

• Java allows a class to inherit from only one superclass but
allows the class to implement one or more interfaces.

• Interfaces are not part of the class hierarchy; unrelated classes
can implement the same interface.

• Interfaces can be declared as class types at compile time.

The ways in which Java interfaces can be used is summarised as follows.

• Declaring methods that one or more classes can implement.

• Determining an object’s programming interface without the need
to reveal the body of the methods implemented in the class.

• Exposing similarities amongst unrelated classes without forcing
a “is a“ class relationship.

• Simulating multiple inheritance by declaring that a class
implements more than one interface.

A close inspection of the title of the window displayed in Figure 5.1 reveals that it includes the term
[mediaStore] (in square brackets). The component of the application, whose classes are shown in Figure
5.1, referred to as [mediaStore] is an example of what is known as a Java package. The next chapter
explains the purpose of packages in a Java application.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

107

Grouping Classes Together in a Java Application

6. Grouping Classes Together in a Java Application

Chapter Twelve explains how classes and interfaces can be grouped together, using a concept not unlike
that of a generic namespace arrangement. Collecting a number of related classes together in a single
structure known as a package makes them easier to manage and avoids potential naming conflicts.

6.1 An Introduction to Java Packages

As an illustration of namespace management, assume that a banking application has two classes named
Account: one of the classes is the definition of a class for a current account and the other class is that for a
savings account. The name of the two classes can be the same (Account) as long as they are placed in
separate packages. This is because each package creates a new namespace such that the types in one
package do not conflict with the same types in another package.

A simple analogy might help the reader to appreciate the need to manage class names and their
namespaces. The use of packages in a Java application is rather like the obvious distinction between a
business address in Main Street in Freetown and a similar address in Main Street in Freeville as

Top Ten Records, Main Street, Freetown and Top Ten Records, Main Street, Freeville

The notation for the address of each Top Ten Records store is for the obvious benefit to everyone
concerned.

The outcome of placing the classes named Account in separate packages means that their unique, fully-

qualified names are written as follows:

currentAccount . Account // refers to the Account class in the package named

 // currentAccount

and

savingsAccount . Account // refers to the Account class in the package named

 // savingsAccount

The notation used for the fully-qualified name of a class means that it can be referred to unambiguously

and accessed by means of the usual ‘ . ‘ (dot) selector.

6.2 Creating Packages

A version of the themed application shown in Figure 6.1 below indicates that classes of the application are
bundled together in one of two packages depending upon their function in the application.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

108

Grouping Classes Together in a Java Application

Figure 6.1 The package structure of the themed application

The two test classes – i.e. the ones that include a main method – named TestGui and TestReferences are
not in a named package and are said to be in the default package of the application.

The package named gui contains a single class named MediaStoreGui. The statements

 package gui; // the class MediaStoreGui is in this package
import mediaStore.*; // the class has access to the classes contained in the other package of
 // the application

are written before the class declaration and state that the class named MediaStoreGui is in the package
named gui and that it requires access to all of the classes in the package mediaStore by virtue of the
wildcard ‘ * ‘ written to the right-hand side of the (dot) selector in the import statement.

This version of the themed application has only one class that displays the graphical user interface (GUI)
for the application. Nevertheless, it makes sense to place this class in its own package: other versions of
the application might contain additional classes that are concerned with the display of the GUI that and
would be placed in the package named gui.

The import statement is required because components of the GUI require access to classes in the
mediaStore package to invoke their methods and run the application.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

109

Grouping Classes Together in a Java Application

The package named mediaStore contains eight classes, each of which begins with the package statement

package mediaStore;

The eight classes are bundled together in their own package because they represent the business logic of
the application. None of these classes has any role in the display of the GUI; therefore, there is no
requirement to import the contents of the gui package into the package named mediaStore.

Whilst the two test classes could have been placed in their own package, this version of the themed
application is used to illustrate the contents of the default package of the application. Both test classes
require access to classes in both packages, which means that the following import statements appear at the
beginning of each source code file:

import gui.*;
import mediaStore.*;

There is no package statement at the head of the source code file of the two test classes; this means that
these two classes are automatically placed in the default package of the application.

The version of the themed application discussed above illustrates the principal reasons why classes and
interfaces are bundled in a package; i.e. the types in a package are functionally related in the context of an
application. A number of other reasons derive from this; they are summarised in the box shown on the
next page.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Java: Classes in Java Applications

110

Grouping Classes Together in a Java Application

Reasons why packages are employed in a Java application:

• developers can easily determine from the structure of an
application how application logic is partitioned amongst its
packages;

• developers can easily find related classes in an application;

• packages in the Java API imply that their contents are a
collection of related classes (see later in this chapter);

• the names of types in one package won’t conflict with the same
names in another package;

• types in a package can have unrestricted access to one another
but restricted access to types outside the package (see later in
this chapter).

The structure of an application, in terms of its packages, is reflected in its directory structure as used by
the operating system that hosts the application. For example, the package structure of the version of the
themed application shown in Figure 6.1 above is reflected in its directory and folder structure in
Windows™ as shown in Figure 6.2 below.

Figure 6.2 The directory of the application shown in Figure 6.1

Figure 6.2 shows that the two test classes are in the default (unnamed) package and remaining classes
have been placed in one of two packages. The IDE used to develop the application shown in figures 12.1
and 12.2 automatically creates a Windows™ folder for each package created by the developer. In practice,
all IDEs will create a Windows™ folder for each package created by the IDE.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

111

Grouping Classes Together in a Java Application

6.3 Naming Convention

Figures 12.1 and 12.2 show that the author (of this guide) has named the packages of the themed
application with a single word that starts with a lower case letter. This simple convention works well
unless independent developers use the same package and class names for applications that are in the
public domain or that are accessible by members of the Java development community.

To overcome the potential problem of more than one application containing a class named
mediaStore.Member – to take, as an example, one of the classes of the themed application – there is a
convention in the Java developers’ community whereby an organisation uses its Internet domain name in
reverse to start package names. For example, the package named mediaStore shown in figures 12.1 and
12.2 should – by convention – be named along the following lines:

 uk.ac.bcu.tic.etheridge.mediaStore

so that the class named Member is given the fully-qualified name of

 uk.ac.bcu.tic.etheridge.mediaStore.Member

Up to this point in the chapter, we have largely considered packages provided by the developer of an
application. The Java language itself is partitioned into a number of packages as is suggested by the
statements at the head of the class definition for the MediaStore class of the mediaStore package of the
themed application, as follows:

package mediaStore;
import java.io.*;

The first statement denotes that the MediaStore class is a member of the mediaStore package. The second
statement implies that the class requires access to all of the classes of the java.io package.

The next section looks briefly at the use of package in the Java language.

6.4 Packages in the Java Language

The mane of the majority of the packages in the Java language begins with java or javax. For example, the
relevant page of the Java API for the java.io package is shown in Figure 6.3 below.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

112

Grouping Classes Together in a Java Application

Figure 6.3 The opening page of the java.io package in the API

The lower left-hand pane shows the first part of the list of interfaces, classes and exceptions associated
with the package. There are about 60 classes in the java.io package that are available to the Java developer.

Although the statement

import java.io.*;

referred to above implies that the author wishes to import all 60 classes of the java.io package into the
MediaStore class of the themed application, he used only four of these classes in the code. In this case,
four import statements would have sufficed, as shown on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

113

Grouping Classes Together in a Java Application

import java.io.FileInputStream;
 import java.io.FileOutputStream;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;

The set of import statements imports the four classes of the java.io package required for the Member class.
(Chapter Thirteen examines some of the classes of the java.io package in the context of what are known as
input/output streams.)

The use of the ‘import all’ statement

import java.io.*;

is useful when developing an application because it means that the developer can use any of the classes of
– in this case - the java.io package without having to insert specific import statements.

The large, central pane shown in Figure 6.3 begins with a brief description of the contents of the java.io

package and includes a hyperlink to a more detailed description. This kind of overall structure of linked
HTML pages in the Java API is typical of most packages, of which there are about 225 in the Java Version
6 Standard Edition API. The sheer number of packages – in excess of 200 – confirms the large scale and
very wide functionality of the standard edition of the Java language. Clearly, in a guide such as this one,
the author can only scratch the surface of what is available to the developer in the API.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Java: Classes in Java Applications

114

Grouping Classes Together in a Java Application

At this point, it is worth mentioning that the Java run-time system automatically imports the (classes of)
the java.lang package into all applications. The java.lang package contains about 40 classes, including
widely-used ones such as the wrapper classes - Boolean, Character, Double, Integer and so on - that are
object representations of the primitive data types, as well as classes such as System, String and Thread.
The rationale for this automatic inclusion is that commonly-used classes should be readily available
without having to insert import statements for them.

6.5 Using and Accessing Package Members

We have seen that the import statement provides access to one or more members of a named package in a
class definition. In order to use a public member from outside its package, one of the following must
be done:

1. The member must be referred to by its fully-qualified name.
2. The member must be imported.

3. The member’s entire package must be imported.

Referring to a member by its fully-qualified name is required each time the reference is used in Java
statements and, therefore, is a satisfactory approach when there are relatively few such uses. For frequent
references, it makes more sense to import the member at the head of the class definition. Once a member
has been imported by an import statement, it can be referred to in the code by its class name rather than by
its fully-qualified name.

However, care should be taken when importing members of packages when, for instance, there are
identically-named classes in them. For example, consider the following code snippet:

 package mynewpackage;
 import currentAccount.Account;
 import savingsAccount.Account;

A reference to the type Account in the class definition that follows the package statement and import

statements would produce a compiler error because the compiler does not know which of the two Account

classes is being referred to. In such a case, the compiler will be able to distinguish between the two
Account types when their fully-qualified name is used in the code even though both Account classes have
been specifically imported.

When a member’s entire package is imported, any member of that package can be referred to by its class
name in the subsequent code.

6.5.1 Controlling Access to Package Members

Let us recall the access levels for the access modifiers listed in Table 3.1; the table is reproduced in Table
6.1 on the next page

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

115

Grouping Classes Together in a Java Application

Table 6.1 Access levels to class members

The first row of Table 6.1 reaffirms what we know about the access modifier ‘private’: i.e. the class itself
has access to its private members as we would expect.

The second row can be regarded as a class’s package contract whereby if no modifier is specified classes
in the same package have access to such members and trust one another to access each other’s members.
A class’s package contract can be used to hide things such as implementation details that are not required
to be known to classes outside the package. This type of contract means that such details can be changed
without changing a class’s public contract.

A class’s public contract declares it as a type that is available to developers using its containing package.
Thus the fourth row shows that all classes have access to public members, regardless of their package and
parentage. We will return to the third row in due course.

As we work our way down the ‘Modifier’ column from ‘private’, ‘default’ (i.e. package level),
‘protected’ and ‘public’, each of the four access levels embraces a wider scope of the kind of class that
can access that member.

Let us return to the third row of the table that was first displayed in Chapter Nine: the protected contract.
The third row indicates what level of access is provided when a class member is declared to be ‘protected’.
The first column indicates that other members of the class itself have access to the protected member of
that class; the second column indicates that classes in the same package, regardless of their parentage,
have access to the protected member of the class; the third column indicates that subclasses of the class
have access to the protected member, regardless of what package they are in. However, the subclass-
protected table entry requires further comment.

The subclass-protected entry in the table can be stated more precisely: a protected member can be

accessed from a class via object references that are of the same type as the class or one of its subtypes.

Despite the apparent clarity of this statement, it gives rise to an interesting twist as the following example
aims to illustrate.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

116

Grouping Classes Together in a Java Application

Suppose that we have a simple class in a package named packageone that includes a protected member,
as shown by the following code.

package packageone;
public class Cat {

// The class Mammal is also in packageone but its code is not included here.
 protected Mammal mammal;
 public void setSpeciesName() { }

} // end of class definition

A subclass of Cat is in a separate package.

package packagetwo;
public class DomesticCat extends packageone.Cat {

 // Inherits the protected variable mammal of the Mammal type.
 // Other members of DomesticCat would follow next.

} // end of class definition

Suppose that DomesticCat overrides the method setSpeciesName with a simple implementation.

public void setSpeciesName() {
 // The current object is a subclass of Cat, so access to the protected member inherited
 // from Cat is allowed.
 this.mammal = null;
 }

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Java: Classes in Java Applications

117

Grouping Classes Together in a Java Application

Given that the current object (this) is a subclass of Cat, access to the protected member mammal is
allowed even though Cat and DomesticCat are in different packages.

Suppose that one of the methods of DomesticCat takes a DomesticCat as an argument and accesses its
protected member, as follows.

public void aMethod(DomesticCat florence) {
 packageone.Mammal m = florence.mammal;
 }

This method compiles because the method accesses the protected member of an object passed as an
argument. Access is allowed because the class attempting to access the protected member (mammal) is a
DomesticCat and the type of the reference florence is also a DomesticCat.

Finally, suppose also that the class DomesticCat defines an overridden method, as follows.

public void aMethod(packageone.Cat florence) {
 packageone.Mammal m = florence.mammal;
 }

The statement

packageone.Mammal m = florence.mammal;

doesn’t compile; the compiler issues the message:

mammal has protected assess in packageone.Cat

The reason why the compiler issues the message is that the class attempting to access the protected
member is DomesticCat and the type of the reference florence is Cat. Access to the protected member is
not allowed because the Cat type is not the same as or a subclass of DomesticCat. Although every
DomesticCat object a subclass of a Cat object, not every Cat object is a DomesticCat.

Although some of the points made in this sub-section may appear to be rather erudite at first, it is
important that the leaner emerges from this section with a reasonable understanding of access levels and
how they are controlled by means of access contracts. Even though some of the implications of controlling
access to class members may appear to be technically difficult, they will be more easily understood when
the reader encounters compiler messages that issue warnings about access to protected members.

6.6 Compiling and Running Package Members

It is likely that the learner will use a learner-level IDE such as BlueJ to write their first Java programmes
to learn the basics of the language. When the learner gains experience, he or she can progress to the use of
a professional-level IDE such as NetBeans™. In any event, an IDE typically provides buttons or menu
options to use to compile and run a Java application; the IDE will ‘find’ and interoperate with the Java
compiler installed on the learner’s computer.

http://bookboon.com/

Java: Classes in Java Applications

118

Grouping Classes Together in a Java Application

If the learner does not use a learner-level IDE in the first instance, code can be written using a simple
text editor and source code files can be compiled from the DOS prompt in the case of a Windows™
operating system.

Referring to the example shown in Section 6.5.1, the package named packageone includes a test class
named UserClassOne with a main method. This class can be compiled from the DOS prompt with the
following command:

C:\ > javac packageone \ UserClassOne.java

and main can be executed as follows:

C:\ > java packageone . UserClassOne

The fully-qualified class name and directory path are, as we would expect, in parallel. This means that the
developer can go to the directory that contains the folder named packageone and compile and run any of
the classes in that package. Similarly, the develop could compile all of the classes in the package named
packagetwo as follows

C:\ > javac packagetwo \ *.java

As long as the programmes javac and java are on the computer’s PATH environment variable, source
code files can be compiled from the DOS prompt. The compiler issues the same messages in the DOS
prompt window as it does if an IDE is used to compile and run the application.

The next chapter examines some of the classes of the java.io package that provide for input to and output
from applications.

